R package for calculating pairwise distances on dual-weighted directed graphs using Priority Queue Shortest Paths. Dual-weighted directed graphs are directed graphs with two sets of weights so that weight1(A->B) != weight1(B->A)—the directed property—and weight2(A->B) != weight1(A->B)—the dual property. dodgr calculates shortest paths according to one weight, while distances along paths are calculating using the other weight. A canonical example of a dual-weighted directed graph is a street network to be used for routing. Routes are usually calculated by weighting different kinds of streets or ways according to a particular mode of transport, while the desired output is a direct, unweighted distance.

Installation

You can install dodgr from github with:

Usage

The primary function,

d <- dodgr_dists (graph = graph, from = pts, to = pts)

produces a square matrix of distances between all points listed in pts and routed along the dual-weighted directed network given in graph. An even simpler usage allows calculation of pair-wise distances between a set of geographical coordinates (here, for a sizey chunk of New York City):

This will automatically download the street network (using osmdata), and even then calculating distances between 1,000 points – that’s 1,000,000 pairwise distances! – can be done in around 10 seconds.

Other Functions

The other main functions of dodgr are dodgr_paths, to return the actual paths between pairs of vertices, and dodgr_flows to aggregate flows as routed throughout a network according to sets of start and end points (origins and destinations), and associated densities or numbers travelling between each of these.

The dodgr graph structure

A graph or network in dodgr is represented as a flat table (data.frame, tibble, data.table, whatever) of minimally four columns: from, to, weight, and distance. The first two can be of arbitrary form (numeric or character); weight is used to evaluate the shortest paths, and the desired distances are evaluated by summing the values of distance along those paths. For a street network example, weight will generally be the actual distance multiplied by a priority weighting for a given mode of transport and type of way, while distance will be the pysical distance.

dodgr includes the conversion functions:

  1. dodgr_to_sfc to convert spatial dodgr graphs into Simple Features format used by the sf package.
  2. dodgr_to_igraph to convert (not necessarily spatial) dodgr graphs into igraph format (not yet implemented); and
  3. dodgr_to_tidygraph to convert (not necessarily spatial) dodgr graphs into tidygraph format (not yet implemented).

Further detail

For more detail, see the main package vignette, along with a second vignette detailing benchmark timings, showing that under many circumstances, dodgr performs considerably faster than equivalent routines from the igraph package.